Trigonometric Identity IV

$\tan^2\theta\equiv\sec^2\theta-1$

This is a helpful equation used to relate the functions tangent (otherwise known as tan) and secant (otherwise known as sec). $\tan^2 \theta$ is the same thing as $(\tan \theta)^2$, it is merely an easier way of writing it, the same is true for $\sec^2 \theta$. The \equiv symbol means "identical to" (i.e. tan squared theta is identical to sec squared theta minus one). This symbol means the relationship is always true, regardless of the value of θ . θ is a placeholder for an angle, and for this identity to work the angle must be the same for both tan and sec.

<u>Proof</u>

Starting with Trigonometric Identity I,	$\sin^2\theta + \cos^2\theta \equiv 1$
Dividing both sides by $\cos^2 \theta$	
cin Q	$\frac{\sin^2\theta}{\cos^2\theta} + \frac{\cos^2\theta}{\cos^2\theta} \equiv \frac{1}{\cos^2\theta}$
Using Trigonometric Identity II, $\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$	$\cos^2\theta$ 1
Simplifying $\frac{\cos^2 \theta}{2\pi}$	$\tan^2\theta + \frac{1}{\cos^2\theta} \equiv \frac{1}{\cos^2\theta}$
1 5 C COS ² θ	$\tan^2\theta + 1 \equiv \frac{1}{\cos^2\theta}$
Using our knowledge that $\sec \theta = \frac{1}{\cos \theta}$	
Due a second in a find that	$\tan^2\theta + 1 \equiv \sec^2\theta$
by re-arranging we mid that	$\tan^2\theta\equiv\sec^2\theta-1$
<u>See also</u>	

- Cosecant, Secant and Cotangent

- Trigonometric Identity I

- Trigonometric Identity II

- Trigonometric Identity III

References

Attwood, G. et al. (2017). Edexcel A level Mathematics - Pure - Year 2. London: Pearson Education. pp.153-154.